Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mater Today Proc ; 2021 Jun 19.
Article in English | MEDLINE | ID: covidwho-2295521

ABSTRACT

The current COVID-19 pandemic has increased the use of alcohol based hand sanitisers globally. These available alcohol based sanitisers cannot provide an antibacterial effect for an extended period of time, after the evaporation of ethanol. Hence, the need for a sanitiser with an anti-microbial activity combined with a long lasting effect is the need of the hour. In this study, we report the synthesis of a long lasting sanitiser from ozonated omega 9 fatty acid esters in an ethanolic medium. The formed vesicles made of the fatty acids have been characterized by DLS, Zeta potential, and time resolved fluorescence anisotropy studies. Ethanol although, provides an antibacterial effect, the effect is more pronounced in our prepared formulation owing to its high peroxide value that generates additional oxidative stress. Finally, this additional antimicrobial effect will have relevance in the current COVID-19 scenario in providing a long lasting hand sanitiser.

2.
Trans Indian Natl Acad Eng ; 6(2): 355-364, 2021.
Article in English | MEDLINE | ID: covidwho-1930630

ABSTRACT

Regular monitoring of electrolyte balance is essential for patients suffering from chronic kidney disease (CKD), particularly those undergoing dialysis. In the context of the recent COVID-19 pandemic, more severe forms of infection are observed in elderly individuals and patients having co-morbidities like CKD. The repeated blood tests for the monitoring of electrolyte balance predispose them not only to COVID-19 but also other to hospital-acquired infections (HAI). Therefore, a non-invasive method for easy detection of essential electrolyte (K+ and Na+) levels is urgently needed. In this study, we developed an optical emission spectroscopy-based non-invasive device for simultaneous monitoring of salivary Na+ and K+ levels in a fast and reliable way. The device consisted of a closed spark chamber, micro-spectrometer, high voltage spark generator, electronic circuits, optical fiber, and an indigenously developed software based on the LabVIEW platform. The optical emission originating from the biological sample (i.e., saliva) due to recombination of ions energized by impingement of electrons returning from high voltage spark provides necessary information about the concentration of electrolytes. A small-scale clinical trial on 30 healthy human subjects shows the potential of the indigenously developed device in determining salivary Na + and K+ concentration. The low-cost, portable, point-of-care device requires only 2 mL of sample, and can simultaneously measure 1.0-190.0 mM Na+, and 1.0-270.9 mM K+ . To our understanding, the present work will find its relevance in combating COVID-19 morbidities, along with regular CKD patient-care.

3.
ACS Appl Bio Mater ; 4(7): 5471-5484, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1337090

ABSTRACT

Centers for Disease Control and Prevention (CDC) warns the use of one-way valves or vents in face masks for potential threat of spreading COVID-19 through expelled respiratory droplets. Here, we have developed a nanoceutical cotton fabric duly sensitized with non-toxic zinc oxide nanomaterial for potential use as a membrane filter in the one-way valve for the ease of breathing without the threat of COVID-19 spreading. A detailed computational study revealed that zinc oxide nanoflowers (ZnO NFs) with almost two-dimensional petals trap SARS-CoV-2 spike proteins, responsible to attach to ACE-2 receptors in human lung epithelial cells. The study also confirmed significant denaturation of the spike proteins on the ZnO surface, revealing removal of the virus upon efficient trapping. Following the computational study, we have synthesized ZnO NF on a cotton matrix using a hydrothermal-assisted strategy. Electron-microscopic, steady-state, and picosecond-resolved spectroscopic studies confirm attachment of ZnO NF to the cotton (i.e., cellulose) matrix at the atomic level to develop the nanoceutical fabric. A detailed antimicrobial assay using Pseudomonas aeruginosa bacteria (model SARS-CoV-2 mimic) reveals excellent antimicrobial efficiency of the developed nanoceutical fabric. To our understanding, the nanoceutical fabric used in the one-way valve of a face mask would be the choice to assure breathing comfort along with source control of COVID-19 infection. The developed nanosensitized cloth can also be used as an antibacterial/anti CoV-2 washable dress material in general.


Subject(s)
Anti-Infective Agents/chemistry , COVID-19/prevention & control , Nanostructures/chemistry , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , COVID-19/virology , Cotton Fiber/analysis , Humans , Masks , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Recycling , Respiratory Aerosols and Droplets/virology , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Zinc Oxide/chemistry
4.
ACS Appl Bio Mater ; 4(7): 5485-5493, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1327183

ABSTRACT

Attachment of microbial bodies including the corona virus on the surface of personal protective equipment (PPE) is found to be potential threat of spreading infection. Here, we report the development of a triboelectroceutical fabric (TECF) consisting of commonly available materials, namely, nylon and silicone rubber (SR), for the fabrication of protective gloves on the nitrile platform as model wearable PPE. A small triboelectric device (2 cm × 2 cm) consisting of SR and nylon on nitrile can generate more than 20 V transient or 41 µW output power, which is capable of charging a capacitor up to 65 V in only ∼50 s. The importance of the present work relies on the TECF-led antimicrobial activity through the generation of an electric current in saline water. The fabrication of TECF-based functional prototype gloves can generate hypochlorite ions through the formation of electrolyzed water upon rubbing them with saline water. Further, computational modelling has been employed to reveal the optimum structure and mechanistic pathway of antimicrobial hypochlorite generation. Detailed antimicrobial assays have been performed to establish effectiveness of such TECF-based gloves to reduce the risk from life-threatening pathogen spreading. The present work provides the rationale to consider the studied TECF, or other materials with comparable properties, as a material of choice for the development of self-sanitizing PPE in the fight against microbial infections including COVID-19.


Subject(s)
Anti-Infective Agents/chemistry , Electricity , Personal Protective Equipment , Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , COVID-19/pathology , COVID-19/prevention & control , COVID-19/virology , Humans , Nylons/chemistry , Personal Protective Equipment/microbiology , Personal Protective Equipment/virology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Recycling , SARS-CoV-2/drug effects , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Silicone Elastomers/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL